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The Interaction of an Acoustic Wave and an
1

Elastic Spherical Shell

By
Pauline Mann2

I, Introduction,

The problem to be considered here, that of a plane
pressure wave impinging on a thin spherical shell, was sug=-
gested by G, F. Carrier in consequence of work previously
done by him on a related problem [1]. (cf. also[61].)

An attempt had been made to determine the resnhonse
to an incident acoustic wave of a thin elastic shell, in particu-
lar a cylindrical shell, taking into account both the incident and
diffracted waves, The form of the functions dealt with in the
analysis made it difficult to obtain accurate explicit results.
If the obstacle is taken to be spherical in shape; we still have
a fairly practical though highly simplified model of an actual
physical structure; moreover, the problem becomes mathematically
simpler, admitting of exact solutions for the deformation and
accompanying strains in the elastic body. It was therefore

decided to treat the case of the sphere in detail,

.

1. The results presented in this paper were obtained in the cours
of research sponsored by the Office of Naval Research under
Contract N7onr - 35810 with Brown University.

2. Research Associate, Brown University.
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We will, as for the cylinder, deal with the linearized
theory of wave propagation in a compressible fluld, and with

small deflections of the shell,

II, Forced Vibrations of A Thin Spherical Shell.

Je consider a closed shell of thickness h with h<<R
where R is the radius of the middle surface., The motion of any
closed ovailshell, in particular a spherical shell 1s, by a
theorem of Jellett [2], primarily extensional, Therefore the
general membrane theory of shells is applicable, If we locate
the origin of our coordinate system at the center of the shell;
and choose as the z-axils the direction of propagatlon of the
incoming wave, then we have the additional simplification of
symmetrical loading (c.f. Fiz. 1). The equations of dynamic
equilibrium for an element of shell may therefore be written (3]

8%v .2 |
q,R cose-ph-gt-é- sin6 = 0 (2,1)

2
o°w
q) - (S - ph 'a‘t’z")R = Oo (2.2)

8 ()

= (Ng Rsinb) = N
2 1o )

NG + N

Here N¢ and Ng are the normal forces/unit length acting on the
sldes of the element, s 1s the applied force (radial in direc-
tion), p is the shell density, and v and w are the tangential and
radial components of the dlsplacement, |

To eliminate N, and Ny from e quations (2.1) and (2.2)

P
we make use of Hooke's Iaw

l. Principle radii of curvature finite and of the same sign,
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= (N, -
€90 Eh(Ne VNQ) (2.3)
L L 4= E(N - vNg) (2.4)

and the expresslons for the stralns in spherical coordinates

cgp = 5[5 + v (2.5)
=1
90 = R [v cot® + w], (2.6)
Combining (2,3), (2.4), (2.5) and (2.6), we obtain N, and Ny

in terms of the displacements w and v

§ N(P + Ne 1-v "R cot & + 2 R + R ’é%] (207)
- N = - Erryv 6 - 1Y
Ng N‘P LR cot = 69] (2.8)
so that the equations of equilibrium become
Eh W 62v G 2
—-——[v(-V'l' ax) + + O 4 8 otn 6 - v ctn® 0]
1-v° a 392 96 L)
2
- ph v R2 =0 (2,9)
at2
-i-—;[v etn ® + 2w + ]- [s -ph —-5 R = 0. (2,10)

An equation in v only can be easlly obtained as follows.
Consider the operator

(1-v) RZ &
MO = 2 4 —-———--—-—--'-E -a-.-b-z N (2.11)

My(w) is found from (2.10) to be equal to

v ctn 8 - &Y 4+ 1=v p2..
v ctn 6 % B R%s (2,12)
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If M, 1s then applied to (2.9), and (2.12) substituted wherever

Mo(w) appears, a relation in v only results:

2
S E 8t2 B2 otr
5 ¥(=-vip R® 62V 5 2°v (l—\a)pR‘2 8ty
E at2 ~ ~ #92 E at2992

2 2
+ 2v ctn?0 + (1-v)pR ctn 6 Q—Z -2 ctn®
B ot

2(2

_ (l-v)pR2 63v

ctn® - [ I+v]ll-ctn 6 .g‘.e’ + v csco8

E 80 at2
2 2
Vv (1~ v)R® as
o e b el e = O. 2.1
662 Eh a8 ] ( 3)

A similar proc:edure2 i1s used to arrive at an equation for ws

2 2 .2 2y W oo
1=V g2(g ~ph E;tvzv) _ 2(1+v)pRT o w . (1-v)pR 3%s

SRR o r NS e v e o C .

2W = =
Eh E at2 E2h 8t
2y 2.4 L 2 2

- (1~V )P R o'w + 8 QE + oW - B_ QE
=) P Iy, e
1 2 42 2 3 2
; - B o’s + B..R. ctn 6 W + R G2W = 0, (2,1k4)
: Eh 062 E 3t200 E 08t<a02

If we introduce the new variables

2 2
* = YW, * = V. 2_—_-......._.t =_._.Et' *-_-:-S-..:..—RS
WR’VR"‘tszp’ssEh
o)

then (13) and (14) reduce to the simpler non-dimensional forms

2. The operation I (2.9) + L,(2.10), where L, = -(ctn 8 + 5%—)

) 8 4 B2 _ (Ly)pR? #°
and Iy = 1+ ctno L4 & - (ty)oR <070 elves the

desired result,




.
Bllell e
62 * 5 u * 2 *
% - -y - % -
M(v*) = 2(l=y ) ) ——— 4 (1=v®)(1=v) T+ 2vv* + v (1 v)at2
02y 8ty (L-v)otn20 B5%
v) + 2v¥ ctn® 8 ++(1-v)ctn
30 a¢2692 Bt2
' 3 *
-~ 2ctn6 X . (1=-v)ctn 6 S¥*_ 4 [1+v][ctn6 v
GLe , 3001 2 o0
- vk esc?@ 4 LI I (1.42)08% (2,15)
2
1Y)
and
L) = otn © (% + O 4 ayx 4 Bty 2wt
LR T il v Ry iy
2.0ty Wk 32wk
- (1ey) 'r)'*' + (l-v) - 2(1+vy) _T
2 2
- _a_g_ - - 2y 9°8* 6 s¥ - o
ctn © = (1-v°) oot 5 + (lev)s*, (2,16)

ITI, Acoustic Wave Propagation.

As in the cylindrical case [1] we have the acoustic

wave equation

2 -

Ap =\ cp,L_T—O (3.1)
where ¢ 1s the velocity potential, Ap 1is the Laplacian in
spherical coordinates and AS = R2 = — (c is the acoustiec

$202 p02
speed of the fluid.,) The pressu?e perturbation p 1s again given
by
P = ~p*¢ (r,0,7)
; (3.2)
R E
p* = f—-f-.-z— = f-f—
to p

where pe 1s the fluid density, The applied stress s of (2,2)
must of course be the same as the acoustic pressure p at the

surface of the sphere, We have in fact
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S¥ = = g; = ;; ¢’TF1199T) = “‘"‘¢,¢(1’9:T) = B¢,¢(1’9’1>’
IV. The Interaction Prohblem.

We now pose the following problem, An incoming plane
wave, @ 4y obeying £3.1) impinges on an elasgic spherical shell
causing it to vibrate according to (2.,15) and (2,16). The
vibrating body acts as a scatterer and, to a lesser extent, as
a radiator. The outgoing waves (scattered and radiated) also
obeying (3.1), in turn influence the nature of the vibratlons,
At the surface of the shell; the radial velocity of the fluid;
¢p(1,8,7), must be equal to the radial velocity of the shell;
w:(e,r). We wish to determine the motion of the sphere and the
pressure dilstribution associated with the incoming and outgoing
waves,

The pressure assoclated with the incident wave is

taken to be [1]

5(z=-7t/\) z £ T/\
Qo8
p = ()“'01)
0 z> T/\

so that the initial velocity potential is

Qo™ 8(z=t/A\) A

[ g

9o =] P p*2 (4.2)

0 Z>'T-'/)\o

' For simplicity let
Qo ' Q Q

9, =7 ¥ = 2340 +9) = =2 X

°'Q PE p (4e3)
_ % =%

w¥ = e W, vk = ¥ V.
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Then our boundary value problem 1s defined by the following
3

set of equations:

LD = BIx (1,0, Dctn 6 = (1=v2)y 1o(1,0,7) + X1(1,8,7)
+ (1-v)X4(1,6,7)] (Lo )
MV) = B(L-vB)X!(1,0,7) (4.5)
Ab=- A2y =0 (4.6)
W_(0,7) =x,(1,8,7) [ Boundary Condition ] (4e7)
A d(z=T/A) ) z < T/N
¢ o= 5 b (""08)
: 0 zZ>T/N .

These equations will be more easily handled if Fourier
transforms are first introduced to eliminate the time dependence,
Denote the transform of a function F by F. Then F and F are

related by:

+ 00

F(r,0,n=-ia) = j F(r,6.,'r)e'c”"e"i’]'c iz (449a)

-00
where a is any positive real number,
F(r,0,t) = L. e07 J\ F(r,@,q-ia)eiﬂr dan
2n -0
or, letting n-la =§

~ig+e@ '
F(r,e,E)eiET dg, (4+49b)

3

This generalized definition of the Fourier transform has been
+ o

o 1
F(r,6,7) = -\r
21 J wig o

used because the usual definition, F(r,0,7) =\f F(r,e,x)e‘iwtdx,

=-00

3. The operators L and M which appear here are those given in
(2 .15) and (2016) .
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fails in the case of the function X-)+
Applying (%.9a) to (3.4) through (3.8) we obtain

TW) = 1BE X' ctn 6 + Y"(1,0,8) + (1-wX + E2(1-vD)X] (4.10)
where 2 )
T - 2 g2 S 23
L = {ctne (ae 4 6@')+ 2 + " £ >
- (l--vg)liLF - (l-V)€2 + 2(l+v)52}
BT = 1BE (1-vO)} (4, 11)
where ) 5
W = {-2(1-\12)52 b1V (1=V)ET + 29 = v (1-V)E
2
-2 9 +(1-v)£2 + 2 ctn® 6 - (l—v)E2 ctn? O
862

- 2 ctn 6 5%- + (l--v)t*,2 ctn 8 2 4 (1+v)(ctn©

Q.
5 o]¢] GIe)
~ csc2 8 +-a-—} '

862
AT +2%E% = 0 (4.12)
1EW(8,E) = X,(1,0,E) (4,13)
-iNZ E
-0 _ =F _ -1 cos O .
lb = iE(bA+iE) = -f(g)e (‘T.l!':‘)

It can be shown, using the method of separation of
variables on (4,12), that ¥ is of the form

r"l/2 [ Jm_%(?\t’,r) + cyn+%(>\gr) Pn(cos 9)),

4, It should be noted that for the functions we are interested
in, the tendancy of the integrand in (4.9a) to become
infinite for large negative 7 is only apparent, Actually,
$° = 0 for =00 < T/\ < zj and W, V, and § are zero until
the wave hits the shell, i.,e, for =00 < ¥A<-1l, so that
Integral of (%,%9a) always exists.
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Since the waves assoclated with E must be outwardly moving, take

C = «1 and write:

- ® (2)
V= n>=:o An(z)hn (\gr) P, (cos §) (4e15)
; where
(2)(M; r) = ( )1/2 [T ,(\Er) - iY (AN D) ]
N 3 nt§ ’

$o may be expanded similarly:

FO(r,8,8) = -£(%) zocan+1>< -)"5,(\EXIP_(cos 8)  (4.16)
e
= ?O B (E)i, (N r) P (cos 6)
n=
where
, L\ 172
P Jn()\Er) = (‘;\E‘I‘l) J'm__%(?\ﬁr).

From the work of Lamb [4] we know that the complete solutions
for W and V may be written:

m —
W(,8) = = W (E)P (cos ) (4+.17)

!

V(0,E) = - 5' V (E)P (cos 0) = -21 w P'(cos 0)sin 6, (4,18

n=0 n=0

Substituting these expressions into (%,10), (4,11) and
(4+.13), we get three algebraic equations for the three unknowns

[(1-E2) (n%+n) = 2 + (1-v3)Et + (1-9)E2 - 2(1+v)52]w

- _1BE[(1ev) + <1-v2)z - )l

(A + B3 D] (4,19)
(201482 = (1-v?)EY + vE2 + 1+ (rn2-1) (€2-1) 7,

= ~1pEev) A0 ) + B3, )] (4.20)
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MEBL() 1 OE) +hEA @R ) = 1gi, (21

These are readily solved to gilve:

- (enr1) (-1)"Cp
B " ag(1)2 @ + 1ICART T+ 10,80T]

(+e22)

n
v, = - (2nt+1) (-1)7B(1+v) .23)

M) @ + 10lepn®' 4+ 100

(1! (1) .
¢y 1Cqh
hp= =i B T Tl 1L o) (o) €, 24)
27 epn(@ 4 100 g
n

where

0y = (1-82)(0%+n) = 2+ (1-vA)E" + (1-v)E2 = 2(1+W)E2

C, = 1BE[(1-v) + (1-v)E2 = (n%+n)],

The quantities of physical interest to us are the stresses and
radial acceleration associated with each vibratlonal mode, and
the total pressure distribution. These can all be found at least
in principle from (%,22), (4.23), (4.24), (4.15) and the in-

version formula (4,9b).

Vo Numerical results for the shell.

The transforms of the stress components will all be
linear combinations of W, and Vg (in general, gl(e)ﬁh + gg(e)ﬁﬁ),
and the transforms of the radial accelerations will be -€2W£.
From (4,22) and (%+.23) we see that these expressions are regular
in ¢ except for a finite number of poles, The theorem of resi-

dues can therefore be used to evaluate the integral of (4%.9b).
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The computation will be carried out in detall for the three lowest

modes, The parameters will be taken as

p=17, b= 0, 7\2=2§5, v= .3

the values appropriate to a wave of infinite length impinging on
a steel shell in water,

Zeroth Modes For this mode, the motion of the sphere
1s very simple, consisting of uniform (6 - independent) expan-
sions and contractions of varying amplitude and neriod,

The stresses, N, and Ng, are given by

P

T
v L1 -1ai+ 00 (l-v)kzﬁeiz;(x +1)d§

21 ya¥-00 2 (¢3-kY ~181¢ %+ 1k°)

2
Here k2 = %L—

L] =K .
5 L=M
The intezrand 1s regular except for poles at
C= 0, 16’581, il + ‘711
with residues respectively of

-16.58({-+l)
]

T
1, .0060e and -1,2818¢"°71(X +1)sin(£)\+ 1.89),

Jordan's lemma can be adapted to glve

i = :S.l-g-‘l)ﬁ-[ 1,00 - 1.2818¢=*71(F +1)sin({- + 1.89)

- o.0060e‘16'58({‘ +1”. (5.1)

A plot of -ZNP/RQO appears in Figure 2, 5

5. These scales will also be used inplotting the lst and ond
modesi8 The reason for thelr cholce will become clear on
page ’
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The radlal acceleration is found directly from (5.1)

to be
2 2 2 2
ow Q.R- O W R - i
0-.20 - . % o .71('{ +l)[o.091+1 sin (1;; + 1,89)
8t  Enp o1, 4Eh
-16,58(% +1)
+ 0.2697 COS(% + 1.89)] - 0.2)4'27 A . (502)
4Eh W 5
The plot of = 5 —=| appears in Figure 5,
QR~ 3t Jo

There is an alternative to the-computatlonal scheme we
have used; in which the integrand 1s expanded in a power series
about infinity and the series integrated term by term., Since
there was a possibllity that it might prove simpler, this was

tried out, the zeroth mode acceleration being taken as a test

case,
32Wo 1 ~igA+ o BCeiC(-;-f +l)d§
8°  2n j 3-x2¢-181 3+ 132
~-1aAh-00
4Ehw 12(3+1)
- _..._Z'EE. . S e C()' [C-Z + 18:[(_,-3
QOR ] 27n &

2995‘”- L+9571c"5 + 82201("6 + ...] ag

[(% +1) - 36E +D7 + S99 F +1)3 + ] (5.3)

The results, which appear in Table l,'demonstrate the impracti-
callty of this new procedure, It 1s apparent that at least 12
terms are needed to find only the first maximum to within 10%

5 These scales will also be used in plotting the 1st and 2nd
modesaisThe reason for thelr choice will become clear on
page .
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First Mode

The stress components here are

N g = Blw, lov| _ _Eh|w, v cot
4 6 1-v{R R80); (1-¥|R R |4

_SoR ‘[W+ Ll _Q.Q.R__[Wl - Vl:[cos 0.
(1-v)B 80|,  (1-v)B

=J oAt 0o 26:"{'% dc

"
i

~taf-oo 21¢% + 3&3 - 1131¢% - 575¢ + 5751
The integrand has poles at

¢ = 1,174, 16.58i, and +3.81 + 0,6451,

On computinz the residues we obtain

-1.17(-;-"\- +1) -16.58('% +1)

W=V = 1.9666¢e - 0.1076e

1
~1,8488¢-0+625 (% +1)s1n[3.811('§ +1) + 1.#79] . (5.4)

Figure 3 shows a plot of -2N(p/RQO at the point @ = =,
| The radial acceleration is found most easily by in-

verting the transform, —gzwl cos ©.

2 2 2 2 .2
aw}_qa gW| QRS 8%Wy
1

Enan— — Q
br,| ~ Enp ov>|  Enp w2
1

=ight
2
02y 1 | (102t2-1275) 4% Mt

- 21¢"+38¢3-1131¢2- 575+ 5751

6'1:2 2nl
~laA~-00

-o.625(§\ +1)

= 1,064e sin [2.72+3.8109(:;c: +l)]

-3.5335e + 3.1171e" L 17K 1) (5 5y
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2
4Eh 8 W} is plotted for 6 =n in Figure 6,
1

!

852
Q" ot

Second Mode.
In general, the two tangential stress components are

not equal to each other for this mode. We have, 1in fact,
Eh Eh
Ng—-i:-;ﬁi}:g+veq)}, NCP-—-i—_v [E(P-\rweg],

S A4 E .@.YN - 993[ 2 ar- L
g. = %TT ]2 = Ehﬁﬁw’+ ang = Enp 3 cos® O(-2V, + 2W2)

QR
.l_[w+ v cot g] ~°-[W+ V cot o]
¢ R 2 Enp 2

i

m
U

- ;Q_fﬁ[g; cos? B(~V, + W) - g—wj.

Enp
L1 M reze.s1esed - guenosast R P Har
27 2x D
-~laA=00
~igA\+ o
v, = - L 8460, 15625¢e - & *1) 4t
2m -iaA~00 D
where
D =-.91(,7+19.11 1§6+123.725C5-1119.475 1C4-3292.5C3+
+1212,25 1024 2756,25¢ ~2756.251 (5.6)

The denominators have seven zeros:

16.54 1, +7.35 + O.431, 40,86 + 1.791i, +0,92 + 0,007 i.

The theorem of residues gilves
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W, = 0,213~ 16954 G +1)_ 5 =043 *“{o.o@zé sin 7,3483 (3 +1)]

<
- 0,0254% cos[?.3’+83(% +1)]}+ 26'1~79()\ +1) 12.2253 sin[0.8578(;":

+1):]+ 2,8318 cos[0.8579(% +l)]}- 29-'007({' Jr1>{3.61’+5

sin‘to.9242({- +1):] + 2,963% cos [0.92%2(;\'E +1)J (5.7)

T
+ 0,0888 cos [7.35(% +1ﬂ}+ 2671790 +l){2.8117 sin 0,8578 (%

~

T
+1)] + 0.8242 cos[0.8579(-):f +1)]JL- g™+ 007 (% *1){0.9015

+sin [0.921:-26‘3 +1) |+ 0.7395 cos[o.92u2(§ ) T (5.8)
At © = t vhere the greatest stresses occur, Ng = Ncp=
QoR 2N

(w2~3V2). A plot of =- a—% for © = m appears in Figure 4,
o
The radial acceleration is given by

-azw] QOR2 9 w:i _ OR 62W2 (3 cos 20+1)
2 2

ot2 EhB &t2 Enp 812 L

(1-v)B

- T . “
22, | iMoo [676,8125¢°- 34491, k062513 1o X g
52 2m\2 -igh-oo D

where D is given in (5.6).

~

W
:2'@2 - 6.6576 16 SHGE +1) 3-0-“3(%+1)J[0.561+ sin[7.3483(-;§ +

r T
+1)] - O 2’+57 COSL'? 3’4‘83({' +li }-l- 3‘1079(X+1){8 939 sin [(-).8578
+1)] - 6,995 cos o 8578 & +1)] + gm0n007( +1)
{o 6982 sin[o 92&2(,\- +1)]+ 0,5966 cos [o 92%2 +1) } (5 9)
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s 0% is plotted for © in Figure 7
- e 1 ed for © =n 1in ure 7.
Q0R2 6T2 ) i g

If we examine Figures 2, 3, and 4 it becomes evident
that the stresses in the lowest mode are very much greater than
those of the 1lst and 2nd modes, and very likely those of the
higher modes as well., In this connection it should be recalled
that the nlots in Fizures 3 and 4, which were made for @ = n;
show the largest stresses which can occur in the first and second
modes at any time., We may therefore consider the resultant
stresses 1In the sphere to be predominantly those of the zeroth
mode, |

The case of the acceleration 1s not so simple., A
plcture of the total acceleration cannot be gained by looking
at the lower modes. In fact, it would seem from Figures 5, 6;
and 7, that the series, g) 82wn does not represent the total

n=0 &2
acceleration for all t, The rate of change of radial accelera-

tion is very great for the first three modes at ¢/\ = =1, 6 = w3

probably the total radial acceleration as summed mode by mode will

00 a2
be discontinuous at t = -\, ® =x, This indicates that Z i—gﬂ
n=0_dt

does not converge uniformly, and therefore that EEE £ %? EEEB
3'52 n=0 6’52
This difficulty, assoclated with the use of the series expansion
as a method of solution, will be encountered again in Section VI
when we discuss the resultant pressure distribution, By antici-

pating the results of that section, we can find the initial value

2
oi‘--’@----E at © =1,
612

Equation (2,2) gives, fort/\ = =1
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= 82w _ 8%y
el
ks 4Eh 62w
T TR R
Taking - - -
5§ = -2Q ((6.9), © = n)
we have LB 62w

TRt

Thus, while we can obtain a very good approximation of the
stresses by considering only the lowest mode, the same is
definitely not true of the acceleration. The actual initial
acceleration is about 40 times as great as the maximum acceler-
ation in the zefoth mode, The agreement obtained by considering
the first and second modes along with the zeroth 1s not apprecie-

ably better; the results still differ by more than a factor of 6.

Quasi-Static Case,

It is of interest to compare the hoop stresses we have
obtained; as represented by those of the zeroth mode, with the
stresses for the quasi-static case; 1.e. for the case in which
the sphere 1s taken to be rigid and scattering 1s neglected.

Since the effects of only the incident wave are con-

sidered, we have for the pressure at time t

~

Qu27R(te+R)  Q (F +1)

YR = > -1<¥< 1.
pressure =<
Q% t1 < § < o,

% e P
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The stresses are glven by

P
T
R +1
- NEQEE"__E -1 gﬁ% + 1
N. =N =%
e ) RQO .
- —2 +l1< F ¢
L 2 M

2
- ﬁ%a appears as the dotted line in Figure 2, where it can be
o

seen that the very simple quasi-static case anproximates the
more exact dynamic case very closely. The stress developments;
while slizhtly out of phase, are essentially parallel with a
difference in maxima of only 1%.

For =1 < ©/\ ¢ 1, there will be an unbalanced force,
due to the incident wave, acting on the sphere., This will re-
sult in an acceleration of the rigid body in the z-direction.

The magnitude of the force is

s 2n_, 5 o
{ R™Qg cos © sin © dp = Q "R~ sin ©
9,10 ° ©

= Qoﬂ[Rg - (tc)?]

il

o R 1 - (x/A)P),

Therefore
2
4rRhp 22 = g nR2[1 - ($2]
a2 ©
hEh %2 _ o 1. 2]
R 6'52 - 0 = 7\-

2
LEh 8z T2
_— =1 - ) .
QR o -6

This has been plotted for purposes of comparison in Figures 5, 6,

and 7 (dotted curves),
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The maximum acceleratlon in the zeroth mode is only
one fifth that of the rigid sphere, The resemblance 1s greater
for the first mode, where the two significant maxima occur within
the time I%|<l, the larger being one half that of the rigid
sphere., In the second mode where we begin to have large nega-
tive accelerations, there is considerable difference in form
between the dynamic and quasl-statlic cases although the maxi-
mum positive acceleration of the former, .7, has moved still
closer to the rigid body value of 1,

This value of 1 is, we recall, very much smaller than
the maximum of the total radial acceleration for the dynamic

case (p. 17),

VI, Resultant pressure distribution.

From (3.2), (4+.2), (4.15), (4.24) and (4+.9b) the total

pressure ls known to be:

Pyotal = Pr(Incident) + Prp = -p¥p_= -QX
0 T
=% - " Jr
0 2 100

3__9—0- "ia+m

o ¥ 2m -i%too

cian{l) ' + 1c,nt)
2)¢ (2)

can(2)* 4 o nb

n
gl €Ty L D) | (@) e [1+
28

i

Q

+ Pn(cos Q)ak (6,1)

where Cq and 02 are glven on pe 10
Unfortunately, the order of summation and integration
in (6,1) cannot be interchanged, i,e. the total pressure cannot

be found as the sum of the pressures associated with the
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individual vibrational modes, This can be seen for the specific
case r = 1y, v = =\, and @ =g as follows, At the moment of

impact, © = <\, we have for each mode and for all @, v
azvn _ 62Wn =
at2 8t

require that the pressure at the surface of the sphere must like-

n- Y

Ce Our equations of equilibrium, (2.9) and (2.10)

wise vanish for each mode at 7 = -\, so that the total pressure
would be zero for all ©, We should expect however, from what
is known of the theory of scattering of plane waves, that the
pressure Qo would be doubled for 6 = and not reduced to zero,
Alternatively, we recall from p. 16 that the total
radlal acceleration 1s discontinuous at © = -\, © = n, Therefore
the total pressure as summed mode by mode will be discontinuous,
indicating thé non-uniformity of convergence of the series in
(6.1),
Because of this peculiarity in convergence, it is not
possible to obtain an approximate solution for the pressure by
considering just the first few terms of the series, E, (4o15),

must be found in closed form if P is to be evaluated., This

total

has not as yet proved feasible because of the complexity of the

summation which must be made, It was noted however that the

expansions for ¢° and § are very similar for r = 1, and & very

large or (% - cos 0) very small, Thils fact can be used to ob-

taln the pressure at the surface of the sphere for t/Az cos O,
By comparison with the expression for $0 on page 9

it 1s seen that the pressure associated with the incident wave

may be wrltten
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«1lak+ oo
o - _ Qi f eiC’U/)\ 00 n
1= 9 =-5-— B nEOan(Mr)Pn(cos e)(2n+1)(-1)" 4C .

~lah«oo

For £ >>p and r = 1, Pr1 (ef. 6.1) becomes, to first order

Q /N sin¢ - 52 - &) ,
I . J e T &0 KT == (2n+1) (-1)7P, (cos ©)&
-t m® (642)
and PI reduces to
~1lal+ oo
n WxA @ s(¢ - - %)
Pr=-jot [ gD C08 T T 1) (1), (cos B)L.
27[ —iﬂ)\—OO C =O C n
(643)
Equations (6.}) and (4+.14) tell us that
-iZcos © @ n
Ce —— 5 cos({ - %% - %)(2n+l)(-i) P (cos 6),

{ = oo n=0

Therefore, take

00)
(( - g_t_)e-i(c-n/2)cos 2] —_— 7 sin(C _ o :]_t_) (21’1’3‘1)
2 L= o n=0 2 2
'(-i)nPn(cos Q)

so that to first order:

- 1¢(% - cos Q)
P =9‘.°_.If_cx ol 5008 0 4
II 27 d
T
= et 3(es 8+ 1) por o< E - cos 0)<< .05

1}

0 for (5'% - cos 8)< 0 (64)

Higher order terms may be obtalned in the same way,
To second order:

ilw/N ©
P - 3 _@_.C__,/__ 5 {;(sin(c-g—’-t--lt.)(l-.if_l.ﬁll:"é.l_l)
II 2% C n=0 2 2 QC

€ = F - Doy 2p 4 nim1)

or2

+ :](Zmrl)(-i)nPn a



_ %
2 ¢ = g * 2¢2
.ot LT
s E-’;-l & -2 2)} (2n+1) (-1)PP (cos @A ~ (6.5)
nx | x nn x
o ot [ glCe/ = cos(¢ - 5= = 3) ) sin@ = 2= - F)n(n+1)
I 21 4 L0 ¢ o2
o(2m-l)(-i)Pn(cos e)ag . (6.,6)

In this case

cos(¢ - 2¢ . L)
-1 o 2 2
e Ceos {:—)é—o(zrﬂ.l)( i) P (COS Q)': 7
sin(¢ - 5— - —)n(n+l)
- 2

therefore by analogy, to second order:

sin(¢ - -2@- - g‘)
¢

T
sl =3leos o o @ ey en® [

{ = o0 n=0

cos(¥¢ - 2'5 P;)n(n-l-l) }
2¢2

[1+-§Z]

+

This does not correspond exactly to the first two terms in P11y

therefore we must subtract

e-—i(C - g')cos e

L
2 g 2 sin(g - 3% - £)(2n1) (-1)" P, (cos o).
¢ 300 2.2 >

We also have, again to second order

" -1l cos © -1(¢ - B)cos é;I

1 COS(C" )
B+1) ° 7 + 2 7 2 —(B+1) 2‘ -2?
‘ Jc_’m n=0 4

1 sin(¢- & -5
2 ° ](Zml)(-i)nPn(cos o).
§2




Bll"'ll -23~

PII can now be written:

ilz/\ _ o
P.o=J0|8 - -1(¢-n/2)cos 6 ¢ © 1€ - 5)cos ©
e b -~
=5 |7 ’ 3 :
g~ilcos @ 4 1(L - F)cos 6
+ @+1)( 7 + : - lat
. —39 eic(%"cosG) i%cose ﬁ+l(l+iig-cosg)
P11 = on c s + B 1o
=t % cos OJ
2

T
Q% [ei '2"(cos 6+ 1) - (% - cos @)(1+B)(1L + el %(cos 6 +1)

- :
+ g_(% - cos G)ei 5 cos © J for O < (% - cos 9) << .05
=0 | for (f - cos ©)< 0, (6.7)

Additional terms will be of little value since our
expansion 1s valid only for ¢ >>B, or (v/A = cos 0)<< '.05.
The terms we have found so far however are sufficlent to tell
us some things of importance.

The incoming wave will reach the point (1,8) on the
sphere at time t/\ = cos 6, The initial pressure for each ©
is ziven by6

6. The elastic waves 1In the shell will travel more rapidly:-than
the acoustic waves and will result in a pressure, P # O, at
(1,0) before the time t/A= cos 6, @ # =, However, thls
effect is negligibly small compared with the one we are
considering,
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P. + ReP

total = I II
= Qo + Qo cos(%(cos o+l)) - 18[% - cos O][1+cos('-’25(cose+1))]
+ g—[% - COS O}[cos(% cos O)]} . (§.8)
= Qy t+ Q cos [ %(cos 6+1)] e (6.9)

At 6 = m, the outermost point of the sphere, the first
effect is that of a plane wave hitting a rigid wall so that we
have

P "'P' P =2Qo

At @ =x /2, the wave just grazes the sphere and therefore

P k—3 o — °
11 = 93 Ptotal %

As © varies from ¢t to m /2, the initial pressure varies contin-
uously from 2Q, to Q.

If the sphere were rigid, the steady state pressure
distribution would be given by

Pp . 0gogm ., {5]

Protal =
The results of section V indicate that we will have asymptotie
values of RQO/2 for the stresses and zero for the radial ac-
celeration, which also correspond to a uniform pressure of
Q, = Pre

At present, this 1s about all that can be said on the

subject of the pressure distribution. A completely satisfactory
way of dealing with the problem will\not be had until it is

possible to find the sum in (6.1).
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VII, Conclusions,

Both the stress and the acceleration for each mode can
readlly be computed to any desired accuracy. For the stress; the
zeroth mode 1ls by for the most important and this is closely
approximated by the zeroth mode of a siihple quasi-static system
(ps 18). The acceleration on impact of the outermost portion
of the shell (© = mn) can be found exactly and is seen to diffep
markedly from the acceleratlions associated with the individual
vibrational modes,

The problem here considered, apart from its intrinsle
interest, should serve as a valuable guide in the solution of

similar problems involving aobstacles of more complicated shape,
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